अनुभवजन्य नियम कहता है कि 99.7% सामान्य वितरण के बाद देखे गए डेटा माध्य के 3 मानक विचलन के भीतर हैं इस नियम के तहत, डेटा का 68% एक मानक के भीतर आता है विचलन, दो मानक विचलन के भीतर 95% प्रतिशत, और माध्य से तीन मानक विचलन के भीतर 99.7%।
अनुभवजन्य नियम सूत्र क्या है?
अनुभवजन्य नियम सूत्र (या 68 95 99 नियम सूत्र) पहले मानक विचलन, दूसरे मानक विचलन और तीसरे मानक विचलन को खोजने के लिए सामान्य वितरण डेटा का उपयोग करता है जो औसत मान से 68% तक विचलन करता है।, 95%, और 99% क्रमशः.
आप अनुभवजन्य नियम का उपयोग कैसे करते हैं?
अनुभवजन्य नियम का उपयोग करने का एक उदाहरण
- माध्य: μ=100.
- मानक विचलन:=15.
- अनुभवजन्य नियम सूत्र: μ -=100 - 15=85. μ + σ=100 + 15=115. 68% लोगों का आईक्यू 85 और 115 के बीच है। μ - 2σ=100 - 215=70. μ + 2σ=100 + 215=130. 95% लोगों का आईक्यू 70 और 130 के बीच होता है। μ - 3σ=100 - 315=55.
जेड स्कोर के लिए अनुभवजन्य नियम क्या है?
वास्तव में, "अनुभवजन्य नियम" कहता है कि मोटे तौर पर घंटी के आकार के वितरण के लिए: लगभग 68% डेटा मानों में ±1, लगभग 95 के बीच z-scores होंगे % ±2 के बीच, और लगभग 99.7% (यानी, लगभग सभी) ±3 के बीच।
डमी के लिए अनुभवजन्य नियम क्या है?
अनुभवजन्य नियम बताता है कि एक सामान्य वितरण में, 95% मान माध्य के दो मानक विचलन के भीतर होते हैं। "दो मानक विचलन के भीतर" का अर्थ है माध्य से दो मानक विचलन और माध्य से दो मानक विचलन।